Asymptotically exact a posteriori error estimates for the BDM finite element approximation of mixed Laplace eigenvalue problems

نویسندگان

چکیده

Abstract We derive optimal and asymptotically exact a posteriori error estimates for the approximation of eigenfunction Laplace eigenvalue problem. To do so, we combine two results from literature. First, use hypercircle techniques developed mixed approximations with Raviart-Thomas finite elements. In addition, post-processings introduced based on Brezzi-Douglas-Marini element. these approaches, define novel additional local post-processing fluxes that appropriately modifies divergence without compromising properties. Consequently, new flux can be used to upper bounds eigenfunction, corresponding eigenvalue. Numerical examples validate theory motivate an adaptive mesh refinement.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Posteriori Error Estimates for the Finite Element Approximation of Eigenvalue Problems

This paper deals with a posteriori error estimators for the linear finite element approximation of second order elliptic eigenvalue problems in two or three dimensions. First, we give a simple proof of the equivalence, up to higher order terms, between the error and a residual type error estimator. Second, we prove that the volumetric part of the residual is dominated by a constant times the ed...

متن کامل

A posteriori error estimates for a finite element approximation of transmission problems with sign changing coefficients

We perform the a posteriori error analysis of residual type of a transmission problem with sign changing coefficients. According to [6] if the contrast is large enough, the continuous problem can be transformed into a coercive one. We further show that a similar property holds for the discrete problem for any regular meshes, extending the framework from [6]. The reliability and efficiency of th...

متن کامل

A posteriori error estimates of stabilized low-order mixed finite elements for the Stokes eigenvalue problem

In this paper we obtain a priori and a posteriori error estimates for stabilized loworder mixed finite element methods for the Stokes eigenvalue problem. We prove the convergence of the method and a priori error estimates for the eigenfunctions and the eigenvalues. We define an error estimator of the residual type which can be computed locally from the approximate eigenpair and we prove that, u...

متن کامل

A posteriori error estimates for nonlinear problems. Lr-estimates for finite element discretizations of elliptic equations

— We extend the gênerai framework of [18] for deriving a posteriori error estimâtes for approximate solutions of noniinear elliptic problems such ihat it also yields L'-error estimâtes. The gênerai results are applied to finite element discretizations of scalar quasilinear elliptic pdes of 2nd order and the stationary incompressible Navier-Stokes équations. They immediately yield a posteriori e...

متن کامل

A Posteriori Error Estimates for Mixed Finite Element and Finite Volume Methods for Parabolic Problems Coupled through a Boundary

We examine two discretization schemes for solving a pair of parabolic problems with significantly different spatial and temporal scales that are coupled through a common interface: a mixed finite element method which uses a rigorous mortar element technique in both space and time for coupling and a finite volume method which employs popular ad hoc projections for coupling. We derive a posterior...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bit Numerical Mathematics

سال: 2023

ISSN: ['0006-3835', '1572-9125']

DOI: https://doi.org/10.1007/s10543-023-00976-w